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Intermediate periodic ‘‘saddle-splay’’ nematic phase in the vicinity
of a nematic–smectic-A transition

G. Barbero1,* and V. M. Pergamenshchik2,†
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2Institute of Physics, prospect Nauki 46, 03650 Kiev-28, Ukraine

~Received 7 May 2002; published 19 November 2002!

We consider possible spontaneous modulations of the nematic director induced by the elastic saddle-splay
K24 term when the value of the elastic constantK24 does not satisfy the Ericksen stability condition for the
homogeneous ground state. According to the standard formula expressingK24 in terms of the twist elastic
constantK22, this can be expected close to the nematic–smectic-A transition whereK22 becomes very large.
It is predicted that in a planar nematic layer~or, more generally, if the surface director alignment is sufficiently
close to a planar one!, a modulated phase with observable long wavelength period can occur in samples
considerably thicker than the anchoring extrapolation length. The modulated nematic phase is expected to
persist into the smectic phase so that its temperature of the transition to smectic phase has to be lower than that
for the homogeneous nematic liquid crystal. Low amplitude short wavelength modulations are predicted for
any thickness if the surface director is sufficiently far from a pure homeotropic alignment. At the expense of
this mode the temperature of a nematic–smectic-A transition in a planar cell with isotropic surfaces has to be
lower than that for a homeotropic cell even if the periodic structure is not accessible for the direct observation.

DOI: 10.1103/PhysRevE.66.051706 PACS number~s!: 61.30.Gd, 64.70.Md
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I. INTRODUCTION

Different phases in the condensed matter physics are c
sified by the symmetry and specific structure of their grou
states. The ground state structure of a specific phase is
only a formal sign thereof, but, which is most important,
an external manifestation of the principal intrinsic forces a
their balance, hidden behind the phase appearance. T
fore, different phases represent different mechanisms of
ting the order in an external-field-free condensed matter.

In particular, different phases of liquid crystals~LCs! rep-
resent different intrinsic mechanisms of setting LC order t
can be described by a spatial distribution of correspond
order parameters in the ground state. One of the specific
order parameters is the directorn showing a macroscopic
anisotropy axis resulting from averaging the individual o
entations of the constituting molecules. Mechanisms of
ting director distortions in the ground state play a princip
role in the physics of LCs since the long range order rela
to the director makes some of the LC phases visualized
means of a polarizing microscope. For instance, a nem
phase is characterized by a homogeneous undistorted gr
state while cholesteric phase is just a twisted nematic wh
the director spontaneously rotates about some single d
tion. The cholesteric order is set by a balance between
chiral force that tends to twist the director and is describ
by the chiral Lifshits energy term, and the nematic elas
force that resists twist deformations and is described by
positive definiteK22 term in the nematic energy.

Generally speaking, the director distribution is always
by a balance of distortion-inducing terms that gain energy
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†Email address: pergam@victor.carrier.kiev.ua
1063-651X/2002/66~5!/051706~10!/$20.00 66 0517
s-
d
ot

d
re-

et-

t
nt
C

t-
l
d
y

tic
nd
re
c-

he
d
c
e

t
r

finite deformations, and distortion-resisting terms that
minimum for an undistorted state. Therefore, in principle
nonuniform director ground state is possible when the f
energy~FE! functional contains sign indefinite terms capab
of decreasing its value at the expense of finite distortions

A nematic phase of liquid crystals is not an exclusion. T
director deformation energyFd is the sum

Fd5
1

2E dVH 1

2
K11(“•n)21

1

2
K22(n•“3n)2

1
1

2
K33(n3“3n)22K24“•@n~“•n!1n3“3nG

1K13“•@n~“•n!# ~1!

of the terms quadratic in the differentiation operator]. Along
with the three positive definite splay, twist, and bend ter
which resist any deformations,Fd contains two sign indefi-
nite terms, the so-called divergenceK24 and K13 terms,
which can be a source of spontaneous distortions. There
the fundamental stability condition of the standard unifo
nematic ground state must be derived from the FE fu
tional. Note that the total director dependent FE functionaF
is a sum of the deformational partFd and the surface anchor
ing energy that depends solely on the director orientation
the surfaceS of the nematic body.

Long ago, Ericksen considered stability of a uniform d
rector ground state, disregarding the anchoring andK13 term,
and found that the elastic constantsK22 andK24 in a uniform
nematic phase cannot be arbitrary. In terms of the dim
sional quantitiesk225K22/K11 and puu5122K24/K11 the
correspondent restriction reduces to the two inequalities@1#,

upuuu,1, ~2!
©2002 The American Physical Society06-1
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22k22,12puu22k22,0. ~3!

The constantK24 enters these inequalities just in the com
bination puu}K1122K24, which is natural aspuu represents
the total contribution of the term“•@n(“•n)1n3“3n# in
Fd ~the K24 term in Eq.~1! is not the only one of this form
the other contribution}K11 is hidden in the sum of the pos
tive definite terms, for details see, e.g., Ref.@2#; nevertheless,
referring to effects always related to the total contribution
this form, we will use the symbolK24). Therefore, the first
inequality means that the energy gain due to theK24 term-
induced deformations must be smaller than the energy
due to the splay term. The second inequality will be of
concern in this paper, and we just note that it restrict
combined action of theK24 andK22 terms setting some lowe
bound to the twist ratiok22.

The role of theK13 term and anchoring in stability of th
homogeneous nematic ground state have been consid
much later. Two qualitatively different spontaneous mod
have been predicted. The first one has the form of a sur
director distortion vanishing over a few molecular lengt
from the surface@3#. Although this surface mode is predicte
for any finite K13 and, practically, in any geometry of th
director, it cannot be directly observed because its wa
length is of the molecular scale. The second mode can h
the form of an observable long wavelength periodic dist
tion @2#. For instance, in the case of a layer with a plan
anchoring at both surfaces, which will be considered in t
paper, the homogeneous planar state is unstable if the th
nessH is smaller than the critical valueHc given by

Hc522La~12puu
21K13/K11!.0, ~4!

whereLa is the anchoring extrapolation length@2#. In this
particular geometry, formula~4! generalizes Erisksen in
equality~2! to the case of a finite anchoring andK13. Since
inequality~2! is assumed to hold,uK13/K11u;1, andLa is of
the order of a micrometer, this mode can be expected onl
submicrometer thin films~see, e.g., Refs.@4,5#!.

However, the situation when at least one of the Ericks
inequalities is violated has never been considered@6#. Pre-
sumably, one of the reasons has been that the value ofK24
required for such a violation seemed to be unrealistic,
the situation when it could actually happen seemed to
difficult to find. Contrary to this, here we show that, accor
ing to the standard ideas of the physics of liquid crysta
such a situation should be rather common.

Indeed, on the one hand, the standard elastic appro
predicts that the value of the constantK24 is given by the
formula

K245
K111K22

4
, ~5!

derived in Refs.@7,8# ~also, see Ref.@9#!. On the other hand
close to a nematic–smectic-A (N-SmA) transition the con-
stantsK22 and K33 grow very large@11,12#. Then Eq.~5!
05170
f

st

a

red
s
ce

e-
ve
-
r
s
k-

in

n

d
e

-
,

ch

shows that while the second inequality~3! remains satisfied,
the first inequality ~2! is violated as the constantpuu'
2k22/2 is large negative, i.e.,

puu!21. ~6!

The inequality ~6! implies that the homogeneous groun
state of the nematic director can be spontaneously defor
in the proximity of a smectic phase. In this paper we w
explore this possibility which is not so obvious since lar
K22 andK33 also imply a very strong resistance to the tw
and bend deformations.

Since theK24 term identically vanishes if the director de
pends just on a single Cartesian coordinate, theK24 term-
induced spontaneous deformations can be very complica
Following arguments of Ref.@2# and experimental observa
tion of theK24 term-induced stripe domains in thin nemat
films @4,5#, we will consider a planar nematic layer and se
the director ground state in the form of a function periodic
a single direction. TheK13 term will be omitted in this analy-
sis since close to aN-SmA transitionpuu

2 is expected to be
large, whereas the ratioK13/K11 remains of the order of one
and can be neglected, see Eq.~4!.

II. K24 TERM-INDUCED PERIODIC INSTABILITY
OF THE HOMOGENEOUS NEMATIC GROUND STATE

AT A NEMATIC –SMECTIC- A TRANSITION

A. Unboundedness of the functionalF d from below
and finding long wavelength spontaneous deformations

First of all we notice that the derivation of inequalities~2!
and ~3! indicates that when these are not satisfied, the fu
tional Fd has no minimum. Indeed, Ericksen showed that
inequality opposite to Eq.~2! or ~3! implies a negative elastic
energy densityf d in each spatial point inside the nemat
body. As f d is quadratic in the modulation wave numberq,
the volume integral overf d is proportional toq, i.e., Fd}
2qK. Since the maximum value of the anchoring ener
does not depend onq, the total energyF can be made unlim-
itedly large negative for an infinite wave numberq. Thus,F
has no lower boundary and cannot be directly minimized

This problem is typical for incorporating the sign inde
nite divergence terms into the elastic theory. Indeed, theK13
term is known to give rise to a similar problem: for an
nonzeroK13 the functionalFd is unbounded below@13,14#.
Nevertheless, it was shown@15# that observable conse
quences of the presence of theK13 term inFd can be derived
solely in terms of this standard functional. Following th
same arguments, we will show that observable modulati
of the ground state, even when the Ericksen inequality~2! is
violated andFd has no lower bound, can be found from th
Euler-Lagrange equations and boundary conditions ass
ated solely with the functionalFd .

Unboundedness of the functionalFd for a nonzeroK24
formally results in a mode with an infinite wave numberq.
However,Fd is just the first term in the energy expansion
the director derivatives, i.e.,

Ftot5Fd1R, ~7!
6-2
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where Ftot is the total elastic energy andR is the higher-
order elastic resistance. The functionalFd describes the stan
dard elasticity linear in the director derivatives]n, whereas
R describes nonlinear elasticity. For standard weak defor
tions, l Mu]nu!1, wherel M is the molecular length, the non
linear elastic energyR is completely negligible compared t
Fd . As a consequence, the linear elastic force is much la
than the nonlinear elastic force, which justifies the very id
of the linear elasticity~note that actually we deal with a
elastic torque—the generalized force that corresponds to
gular variables!. However, starting from some valuej of
u]nu, which is expected to be not much smaller than 1,
nonlinear termR as a functional of]n grows much faster
thanFd so that, for derivatives just slightly larger thanj, the
nonlinear elastic resistance attains the level of the linear e
tic forces@14#. In particular, this implies that for sufficiently
large director derivatives, the nonlinear elastic force can b
ance the linear elastic force due to the presence of theK24
term. In terms of energy this means thatR brings the lower
boundary to the sum~7! so thatFtot attains the minimum
value for some large but finite wave numberQM which is of
the order of 1/l M .

Further, the total energyFtot is bounded below and dete
mines the director distribution by means of the Eul
Lagrange equationsL̂(Fd1R)50 and boundary condition
B̂(Fd1R)50 whereL̂ andB̂ are the known linear operators
To find the solution of these equations in the whole range
distortion strengths, one needs to know the form of the fu
tional R. However, if one is interested in mesoscopic wav
length modes, i.e., modes whose wavelength is much la
thanl M and that correspond to small director derivatives,
problem can be dramatically simplified. Indeed, the con
butions of Fd and R in the above equations represent t
correspondent generalized elastic forces. Since for smal
rivatives the linear force dominates, the second term in b
of the above equations can be neglected compared to the
one, which reduces toL̂Fd50 and B̂Fd50. But these are
exactly the Euler-Lagrange equation and boundary condi
formally corresponding to the standard functionalFd for any
value of K24. Thus, for anyK24, mesoscopic wavelengt
modes can be found from the standard equations assoc
solely with Fd in spite of the fact that this functional ma
have no minimum. This is the essence of the procedure
rived in the case of theK13 term in Ref.@15#.

Now we address the modes with a wavelength of the m
lecular scale. To find such modes one needs to know
functionalR. However, these modes would be just a form
solution and actually are of no interest. As mentioned
Introduction, such modes have a very short wavelength
cannot be directly observed. Indeed, if such a mode ha
notable amplitudea then its energy, which can be estimat
as2QMKa2V whereV is the system volume, is so low an
hence the nematic phase is so stable that the transition
smectic-A phase is not possible. Moreover, great deform
tions ]n;QMa involved would make impossible the ver
nematic phase. If, in contrast, its amplitude is very small th
such a short wavelength mode cannot be observed. M
over, a very short wavelength modulation with a small a
05170
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plitude can be considerably suppressed by thermal fluc
tions that are not incorporated in the elastic approach.
only effect of such modes is some drop2FM of the total
energy which is difficult to estimate, but which is definite
negative. In principle, this energy drop due to directly uno
servable modes can result in a shift of the temperature of
N-SmA transition which will be discussed in Sec. III.

We arrive at the conclusion that the search for theK24
term-induced spontaneous deformations is physically in
esting if they have sufficiently long wavelengths or, equiv
lently, sufficiently small wave numbers. These modes can
found from the standard Euler-Lagrange equations
boundary conditions for the functionalFd . In the following
section, this is done in the geometry of a planar nema
layer.

B. Spontaneous modulations in a planar layer

Consider a plane nematic layer of thicknessH and assume
that at its two surfaces the polar anchoring potentialsf a are
the same and favor a planar alignment, whereas the
muthal anchoring is negligible. The last assumption
adopted both for simplicity and because isotropic surfac
that modern technology enables one to make even on s
substrates@16#, provide the best conditions for theK24,
mechanism to come into play. We assume that the directo
a periodic function of the coordinatey which is along the
layer, and also depends on the coordinatez, which is normal
to the layer and has the onsetz50 on its midplane. The
director components on the upper surfacez5H/2 and lower
surfacez52H/2 will be indicated by subscripts 2 and 1
respectively. Then the director-dependent FE of the perio
structure per one period 2p/q can be written in the form@2#

F5
K11q

4p E
2H/2

H/2

dzE
0

L

dy@~] inj !
21~k2221!~n•“3n!2

1~k3321!~n3“3n!2#1
K11q

4p E
0

L

dy@2puu~nz,2]yny,2

2nz,1]yny,1!1 f a~nz2
2 !1 f a~nz1

2 !#, ~8!

wherek335K33/K11 is the reduced dimensionless bend co
stant. We will use the standard director parametrizationn
5(sinu cosf,sinu sinf,cosu), with the polar angle u
counted from thez axis, and the azimuthal anglef counted
from the y axis. In terms of these angles, the standard u
form planar director ground state is given byu5p/2, f
50.

As in Ref.@2# we assume small deviations from the plan
state to be in the form

u2p/25 f ~z!sin~qy!, ~9!

f5g~z!cos~qy!.

ExpandingF in a functional Taylor series of these amplitud
up to quadric terms and performing they integration, one
obtains
6-3
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F5F21F4 . ~10!

The quadratic part is of the form

F2$ f ,g%5
K11

2HE
21/2

1/2

dz@ f 82 1x2g21k22~x2f 21g82

12xg8 f !#1
K11

2H
@puu~ f 2g22 f 1g1!1h~ f 1

21 f 2
2!#,

~11!

where we introduced following reduced quantities: the
mensionless coordinatez5z/H ~for which we leaved the
same notation!, reduced thicknessh5H/La (La is the an-
choring extrapolation length!, and dimensionless wave num
ber x5qH. In the last bulk term in Eq.~11! we neglected 1
compared to a largek22; the quadric energyF4 will be given
below.

Now we show that this functional actually describes tw
independent modes. To this end we separate symmetric
antisymmetric~with respect to the middle planez50) parts
of the functions f (z) and g(z), i.e., f 5 f 11 f 2, g5g1

1g2, where f 1(z)5 f 1(2z), g1(z)5g1(2z), whereas
f 2(z)52 f 2(2z) and g2(z)52g2(2z). Then the func-
tional ~11! splits into the sum

F2$ f ,g%5F2$ f 2,g1%1F2$ f 1,g2%, ~12!

where F2$ f 2,g1% is the energy of the modef 2,g1, and
F2$ f 1,g2% is the energy of the modef 1,g2. As there is no
interaction term in the leading order energy~11!, the modes
f 1,g2 and f 2,g1 are linearly independent. In particular, th
Euler-Lagrange equations forF2$ f ,g% split into independent
Euler-Lagrange equations for the functionalsF2$ f 2,g1% and
F2$ f 1,g2%.

The Euler-Lagrange equations for the function
F2$ f 2,g1% constitute the system

f 292k22x
2f 22xk22g

1850, ~13!

k22~g181x f 2!82x2g150, ~14!

which can be readily transformed to the form

g15 f 2-/x3, ~15!

t f 2-82x2f 291k22x
4f 250. ~16!

From these equations the modef 2,g1 is found to be

f 25a fa
21b fb

2 , ~17!

g15aga
11bgb

1 ,

wherea andb are the integration constants;

f a
2~z!5cos~xaz!sinh~xbz!,

f b
2~z!5sin~xaz!cosh~xbz!, ~18!
05170
-

nd

l

ga
1~z!5~2a313ab2!cos~xaz!cosh~xbz!

1~b323a2b!sin~xaz!sinh~xbz!,

gb
1~z!5~a323ab2!sin~xaz!sinh~xbz!

1~b323a2b!cos~xaz!cosh~xbz!;

x is an arbitrary positive number, and

a5A2k2221

4k22
, ~19!

b5A2k2211

4k22
.

The Euler-Lagrange equations and their reduced fo
~16!, ~15! for the modef 1,g2 can be obtained by replacin
f 2,g1 with f 1,g2. The modef 2,g1 obtains in the form

f 15c fc
11d fd

1 , ~20!

g25cgc
21dgd

2 ,

wherec andd are arbitrary constants, and

f c
1~z!5cos~xaz!cosh~xbz!,

f d
1~z!5sin~xaz!sinh~xbz!, ~21!

gc
2~z!5~a323ab2!sin~xaz!cosh~xbz!

1~b323a2b!cos~xaz!sinh~xbz!,

gd
2~z!5~b323a2b!sin~xaz!cosh~xbz!

1~2a313ab2!cos~xaz!sinh~xbz!.

The above solution of the linear problem allows one
find critical points where the system becomes unstable w
respect to nonzero amplitudesa, b, c, and d. This point is
determined by those parameters for which the quadr
functional F2 vanishes for finite values thereof, and can
found from the boundary conditions forF2.

The boundary conditions to the Euler-Lagrange equati
~13! and ~14! can be reduced to the form

Aaa1Abb50, ~22!

Baa1Bbb50, ~23!

where

Aa5~ f a
281puuxga

11d fa
2!2 ,

Ab5~ f b
281puuxgb

11d fb
1!2 , ~24!

Ba5@k22~ga
181x f a

2!1puux f a
2#2 ,

Bb5@k22~gb
181x f b

2!1puux f b
2#2 ;
6-4
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the subscript 2 indicates that the correspondent functio
calculated forz51/2. The critical condition for the mode
f 2,g1 ~17! to occur is

Dab5AaBb2AbBa50, ~25!

whereDab is the determinant of the system~22!, ~23!. This
equation can be treated analytically only in the limit of
very smallx. In this limit one has the following asymptoti
behavior:

f 2
2.

x

2A2
Fa1b1

1

4k22
~b2a!G ,

f 2
28.

x

A2
Fa1b1

1

4k22
~b2a!G , ~26!

g2
1.

1

A2
Fa2b1

3

4k22
~a1b!G ,

g2
18.2

x2

2A2
Fa1b1

5

4k22
~b2a!G .

Substituting this into Eq.~25! up to termsO(1/k22) gives

h12~12puu
2!50, ~27!

or, equivalently,

hlw522~12puu
2!, ~28!

wherehlw is the critical value of thickness of the instabilit
with a very small wave number, which reproduces Eq.~4! for
K1350. We will see that, as in Ref.@2#, hlw is actually the
upper critical thickness below which the modulation withx
→0 appears.

The critical condition for the modef 1,g2 ~20! with the
amplitudesc andd can be found similarly. IntroducingAc ,
Ad , Bc , andBd by replacinga by c, b by d, f 2 by f 1, and
g1 by g2 in the definition~24!, this condition can be re
duced to the form

Dcd5AcBd2AdBc50, ~29!

where Dcd is the determinant of the linear system for t
amplitudesc and d, obtained from the boundary condition
for the modef 1,g2 ~21!. However, in contrast to Eq.~25!,
equality~29! is not possible for smallx, which can be easily
seen from the asymptotic value of the functionalF2$ f 1,g2%.
Indeed, one hasf 2

1.c, f 2
18;g2

2;x, and hence the positive
term f 2

1 f 2
18;x, whereas the negativeK24 term puuxg2

2 f 2
1

;x2, which is much smaller forx→0. Therefore, the mode
f 1,g2 cannot appear for very small wave numbers as
energy of such a modulation would have been positive.
x;1 the critical condition can only be analyzed numerica

The pure linear problem we have dealt with so far on
allows for finding the critical points that correspond toDab
50 or Dcd50. We, however, are interested in the behav
05170
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of the system for the parametersh, puu , k22, andk33 below
this point, where the determinants are nonzero and the in
bility is well developed. This behavior and, in particula
small but finite amplitudes of the modes can be found o
with regards for the quadric termF4 in the expansion ofF
~8!. In F4 we can retain only the bend and twist terms as th
have very large coefficientsk33 andk22, which gives

F45F4bend1F4twist ,

F4bend5
k33

8HE
21/2

1/2

dz@3~x2g21 f 82! f 212x f 2f 8g

1~ f g82xg2!2#, ~30!

F4twist52
k22

8HE
21/2

1/2

dz@~x f 2g8!~ f 213g2!~x f 2g8!

1~g8 f 212 f f 8g!13g2g81x f 312g~ f f 813gg8!

12x f ~ f 22g2!#.

The procedure of finding small modulation amplitudes b
low the transition homogeneous state-stripe state was de
oped in Ref.@17# ~to be specific, we will first consider the
amplitudesa andb). It assumes that the distancee from the
critical point, which is somea priori unknown combination
of the physical parameters, is sufficiently small as the am
tudesa andb vanish and grow along with this distance. Th
small parametere is proportional to the determinantDab of
the system of linearized boundary conditions, and thus
amplitudes are small if the system is sufficiently close to
critical points whereDab vanishes. Describing small ampl
tudes close to the instability onset involves two gene
steps: first, findinge as a function of the parameters of th
problem and determining intervals thereof where the am
tudes are finite, and, second, calculating values of these
plitudes.

The first step does not involve quadric term~30! and deals
solely with the linear equations considered above. Both
ear homogeneous equations~13! and~14! cannot be simulta-
neously satisfied forDabÞ0. As a result, one can choose on
of the two linear boundary conditions~13! and ~14! and
solve it to find one amplitude as a function of the other, let
say a5a(b). Then this function of the amplitudeb is sub-
stituted toF2$ f 2,g1% to give F2}Dabb

2. The sign of this
expression determines the instability intervals: the amplitu
is finite when the sign is negative, and zero when it is po
tive; while the square root of the negative of the coefficie
beforeb2 plays the role of the small parametere, as in the
former case the amplitude is obviously proportional to t
quantity @18#.

The second step allows one to find the amplitude value
the intervals of the parameters found in the step one
requires extensive calculations. However, calculating
precise amplitude values would not add any principal inf
mation that could facilitate an experimental study of the p
dicted modulated phase since knowing the magnitude o
is sufficient for this purpose@19#. Moreover, measuring the
values ofk22 andk33 at aN-SmA transition is a problem in
6-5
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itself, but these are necessary for the precise calculatio
the modulation amplitude. In this situation, it is the mo
important to have a correct order of this quantity, which c
be obtained quite easily. To this end the total contribution
the term of the fourth order in the modulation amplitude c
be estimated by substituting the solutiona(b), obtained from
the linear equations, into the quadric term~30! @20#. After
that the sum~10! is minimized with respect tob. Finally,
smallness of the amplitudes should be verifieda posteriori
which gives the parameter range where the perturba
method described is applicable. Below we follow this proc
dure.

We choose the first equation~22! and solve it with respec
to a, which gives

a52
Ab

Aa
b. ~31!

Now the values ofF2 andF4 have to be calculated for th
solution given by Eqs.~17!, ~18!, and~31!. To calculate the
energyF2$ f 2,g1% of the equilibrium modef 2,g1 we make
use of the Euler-Lagrange equations and Eq.~22!, which is
similar to the derivation of virial theorems. Multiplying Eq
~13! by f and Eq. ~14! by g, integrating across the laye
adding the results, and then using Eq.~31!, one obtains
F2$ f 2,g1%5ebb2 ~the coefficienteb is given below!. A
similar expression is obtained for the modef 1,g2 with the
amplitudesc andd, i.e., F2$ f 1,g2%5edd2. As a result, the
total quadratic term is the sum

F25ebb21edd2, ~32!

whereeb and ed , which play the role of the distance from
the critical point, are of the form

eb52~gb2
1 Aa2ga2

1 Ab!
Dab

Aa
2

, ~33!

ed52~gd2
1 Ac2gc2

1 Ad!
Dcd

Ac
2

.

In accordance with the general expectation, these qua
ties are proportional to the determinantsDab and Dcd , re-
spectively, which justifies considering them as a dista
from the critical point whereDab50 or Dcd50. It is clear
that e, which vanishes in the critical point, is necessar
negative in the modulated phase. A numerical analysis sh
that eb as a function of the wave numberx can be negative
for both smallx and largex, whereas the functioned is
always positive for smallx. For this reason and for brevity
we will consider the amplitudesb and a(b) of the mode
f 2,g1 alone.

Following the method outlined above we now calcula
the quadric term~30! as a function of the single amplitudeb.
Obviously, this functionF4(b) has the form

F4$a~b!,b%5F̃4,bb4,
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whereF̃4,b is a result of substituting Eqs.~17!, ~18!, and~31!
in the functional~30!, omitting the common factorb4 in thus
obtained expression, and performing thez integration~in our
case, it can be done just numerically!. Then up to the fourth
order in the amplitude, one has

F$ f 2,g1%5ebb21F̃4,bb4. ~34!

Minimization of this expression with respect to the amp
tudeb gives

bm5HA2
eb

2F̃4,b

, eb<0

0, eb.0,

~35!

Fm5F~bm!5H 2
eb

2

4F̃4,b

, eb<0

0, eb.0.

~36!

These are the desired expressions, respectively, for
modulation amplitude and energy which can now be stud
as functions of the deformation sourcepuu , volume to surface
ratio ~reduced thickness! h, the bend and twist elastic resis
tancek33 andk22, and the wave numberx. Similar formulas
determine the amplitudesdm and c(dm) and the energy
F(dm) of the mode f 1,g2. In the following section, we
describe the modulations represented by these formulas

III. THE MODULATED SADDLE-SPLAY NEMATIC
PHASE: APPEARANCE AND OTHER OBSERVABLE

EFFECTS

A. Modulation amplitude and spectrum

Numerical calculations by formulas~35!, ~36!, and ~33!

show that, as expected, the quantitiesF̃4,b and F̃4,d are al-
ways positive so that the negativity ofeb anded is necessary
for the correspondent mode to occur. We fixed values of
the parameters butx and calculated the amplitudesb andd
as functions ofx ~spectrum!. In line with the analytical
analysis of the smallx limit, the spectrumb(x) may have a
long wavelength branch that exists forh,hlw and starts at
x50, and a short wavelength branch that appears for
thickness providedpuu,21. At the same time, the spectrum
d(x) has only a short wavelength branch~we emphasize tha
the short wavelength branch contains a wide range ofx cor-
responding to modulations with small director derivativ
and mesoscopic wavelength; this nomenclature appears
just to label the two spectral branches!.

We will describe the spectrum in terms of the supercr
cality of the main parameters:Dpuu5puu11 which shows the
distance from the point where the Ericksen inequality~2! is
violated ~becomes the equality!, and Dh5(h2hlw)/hlw
which shows the distance from the critical point of the lo
wavelength instability. ForDpuu.0, a nematic phase remain
homogeneous for anyDh ~if K13 is neglected@2#!. For Dh
.0 and negativeDpuu somewhat smaller than 0, a lon
wavelength branch is absent, and both amplitudesb and d
6-6



om
ns

a
d
d
er
y
fi

y

o

io

c

its
la-
r
ns

ir
aly-
ex-

hort

x-
ribe
t as
n-
qua-
ion

p-

e

s

st
C

s

re

INTERMEDIATE PERIODIC ‘‘SADDLE-SPLAY’’ . . . PHYSICAL REVIEW E 66, 051706 ~2002!
have a short wavelength branch for largex.xsw;10, this
xsw being always smaller forb than ford. For a very largex,
bothb andd exponentially decrease which can be seen fr
the formula~35! and the presence of the hyperbolic functio
in f (z) and g(z): b;d;exp(2223/2x) when x→2`. At
the same time, the energy of both the modes monotonic
drops toward large negative numbers as was predicte
Sec. II A. Obviously, ifDpuu,0, behavior of the energy an
amplitude for very largex has exactly the same charact
also forDh,0, which is illustrated in Figs. 1–4. Formall
speaking, the short wavelength spectrum continues to in
ity, but, of course, as was discussed in Sec. II A, actuall
ends at some very large but finitexM5QMH.

Here it is in order to note that, although the amplitudes
modulations with an extremely largex;xM cannot be found
without incorporating the higher-order termR, the above
asymptotic results, obtained from the standard equat
valid only for a sufficiently smallx, can give us an idea
about the exact amplitude behavior forx;xM . Indeed, the
higher-order termR describes an increasing elastic resistan

FIG. 1. ~a!,~b! The amplitudeb ~in radians! ~a! and energy den-
sity F/h ~in units K11/h2) ~b! as functions of the dimensionles
wave numberx for the thickness fixed ath510 and three different
values of puu : puu523 ~solid!, puu523.17 ~dash-dotted!, puu5
23.5 ~dashed!. The reduced twist and bend constants are mode
large: k22510, k33515. This might be relevant to a nematic L
relatively far from a nematic–smectic-A transition.
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lly
in

n-
it

f

ns

e

to large deformations, and it is natural to assume that
incorporating would have resulted in even smaller modu
tion amplitudes. For smallx it means nothing as the linea
elasticity dominates in this range, whereas for modulatio
with a very largex it gives more ground to believe that the
exact amplitudes remain negligible as predicted by the an
sis above. This reasoning allows one to assume that the
ponential amplitude decrease at the right side of the s
wavelength spectrum provides a natural upperx bound for
physically interesting modulations. In other words, e
tremely short wavelength modes, that we cannot desc
accurately by the standard equations, are of no interes
they have negligible amplitudes; while all modes with no
negligible amplitudes are described accurately by these e
tions. This remarkable property makes our considerat
self-consistent and closed.

The inequalityDh,0 can take place only ifDpuu,0. For
Dh,0, in addition to the short wavelength branch there a
pears a long wavelength branch which begins atx50 and
ends at somexsl ~solid curves in Figs. 1 and 2!. The posi-
tions of the endxsl of the long wavelength spectrum and th

ly

FIG. 2. ~a!,~b! The amplitudeb ~in radians! ~a! and energy den-
sity F/h ~in units K11/h2) ~b! as functions of the dimensionles
wave numberx for puu fixed at puu525 ~which corresponds to
hlw548) and three different values ofh: h540 ~solid!, h538
~dashed!, h537 ~dotted!. The reduced twist and bend constants a
k22570, k33590.
6-7
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beginningxsw of the short wavelength spectrum depend b
on Dh andDpuu ~Figs. 1 and 2!: the closerDh andDpuu to 0,
the smallerxsl , the largerxsw , and thus the longer the ga
xsw2x lw between the two spectral branches. AsDh and
Dpuu become more and more supercritical~i.e., negative and
large in the modulus! these two points first coincide~dash-
dot curves in Figs. 1 and 2!, and then the gap between th
branches disappears~Figs. 1–4!.

In previous sections we have restricted the formulas
consideration of a single mode with an arbitrary valuex of
the wave number. The spectrum of the instability, howev
shows that the periodic modulation can contain many h
monics: the modulation energy is negative for a continu
range ofx. For the periodic wave, this implies that it is
superposition of the form(n51ancos(x0n/H) with some prin-
cipal wave numberx0. In principle, this wave number can b
found as a minimizer of the sum~34!, but this is very diffi-
cult. Indeed, different harmonics are independent only in
linear approximation: only the total quadratic energy of
nonmonochromatic wave is the sum of energies~11! of the
constituent harmonics. Such an additivity does not take p

FIG. 3. ~a!,~b! The amplitudeb ~in radians! ~a! and energy den-
sity F/h ~in units K11/h2) ~b! as functions of the dimensionles
wave numberx for puu fixed at puu525 ~which corresponds to
hlw5198) and four different values ofh: h513 ~dotted!, h58
~solid!, h55 ~dashed!, andh52 ~dash-dotted!. The reduced twist
and bend constants arek22570, k33590.
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in the fourth-order terms: the quadric functional~30! de-
scribes harmonics interaction which determines the am
tudesan via n nonlinear equations. However, the princip
wave numbers of the instability and the correspondent a
plitudes can be estimated qualitatively from the dependen
b(x) and F(x) without solving this complicated nonlinea
problem.

The curves on Figs. 1–4 suggest that, in spite of having
some situations no gap between long and short spatial w
and thus no formal division into two branches, there are t
quite different wave numbers that determine the observa
modulation. The first one is determined by the local ene
minimum that lies atx between 1.5 and 2; and the seco
one is determined by the local amplitude maximum that l
close tox;8. Figs. 1, 3, and 4 show that the amplitude
the principal long wave (;0.1) is considerably larger tha
the amplitude of the principal short wave. However, Fig.
suggests that in some situations these waves can have
but comparable amplitudes. Now we note that modulatio
with very different wave numbers can always be conside
quasi-independent: the fast spatial mode with a large w
number follows adiabatically the amplitude change of t

FIG. 4. ~a!, ~b! The amplitudeb ~in radians! ~a! and energy
densityF/h ~in unitsK11/h2) ~b! as functions of the dimensionles
wave numberx for puu fixed at puu5210 ~which corresponds to
hlw5198) and four different values ofh: h580 ~dotted!, h540
~solid!, h513 ~dashed!, andh55 ~dash-dotted!. The reduced twist
and bend constants arek22570, k33590.
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slow spatial wave with a small wave number. This drives
to the following plausible picture of the instability appea
ance.

The spontaneous modulation has a wave number of
order of 2, and its amplitude can be small or as large as a
tens of degrees. This wave can have a fine structure wi
wave number of order of 10. The fine structure can be s
or can have an insufficiently large amplitude to be eas
observed. In addition, even if the parameters of the prob
do not allow for the instability with a directly observab
amplitude and spatial period to occur~e.g., the thickness is
too large!, the energy of the system can nevertheless
lower than the energy of the homogeneous nematic LC at
expense of the instability with a very short wavelength a
small amplitude. This can result in an observable eff
which is considered below.

B. Spontaneous modulations and the temperature of a
nematic–smectic-A transition

Any deformation of a nematic director—spontaneous
induced by an external source—adds some amount of en
to the energy of the uniform state. This can influence con
tions that determine transitions of this nematic LC into oth
phases, and correspondent shift of the transition tempera
can, in principle, be observed. Here we will be concern
with the temperature of a nematic–smectic-A transition.

There is a fundamental difference between the temp
ture shift of the transition to a uniform SmA phase from a
nematic phase distorted spontaneously (Nsd), and from a
nematic phase with distortions induced by an external fo
(Nind): these shifts have different signs which gives a pr
cipal possibility to distinguish between the spontaneou
modulated phaseNsd and the standard uniform nemat
phaseNind with distortions induced by an external sourc
Let us show this.

Spontaneous deformations lower the energy because
appear in the ground state of a nematic phase which m
that

F~Nsd!,F~Nu!. ~37!

In contrast, if the nematic ground state is uniform then a
deformations cost a positive amount of energy, i.e.,

F~Nind!.F~Nu!. ~38!

The temperatureT0 of a standard transitionNu→SmA
between the two spatially uniform phases can serve an o
ous control point, and all other related temperatures will
considered relative to it. The transition temperaturesT(Nu
→SmA)[T0 , T(Nsd→SmA), and T(Nind→SmA) are de-
termined by the following obvious equalities:

F~Nu!5F~SmA!⇒T0 ,

F~Nsd!5F~SmA!⇒T~Nsd→SmA!, ~39!

F~Nind!5F~SmA!⇒T~Nind→SmA!.
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Further, the energy of bothNu and SmA is a decreasing
function of the temperature, and, forT.T(N→SmA), the
energy of a nematic phaseN is lower than the energy of a
smectic-A phase, and vice versa. This picture is illustrated
Fig. 5. It clearly shows that a spontaneously modulated ph
transforms into a SmA phase at the temperature which
lower than the temperatureT0 of the standard transition from
a uniform nematic phase, whereas deformations induced
nematic with the uniformed ground state bring the tempe
ture of the transition up. This can be expressed by the
lowing inequalities:

T~Nsd→SmA!,T0 , ~40!

T~Nind→SmA!.T0 .
A negative shift of the nematic–smectic-A transition tem-

perature gives a possibility to identify a spontaneou
modulated phase. Furthermore, it is easy to see that the
sults obtained in this and previous sections imply that
temperature of the transitionNu→SmA in a planar cell can
be lower than that in a homeotropic cell even if a direc
modulation is not observed in the planar cell. Indeed, assu
that a planar cell has isotropic surfaces, and, thus, the
muthal anchoring is negligible, but the cell thickness is larg
than the upper critical thicknesshlw ~28! of the long wave-
length modulation. Then sufficiently close to the nemati
smectic-A transition, in a planar cell there appear sho
wavelength modulations that are not easily observable
produce negative energy2FM , see Sec. II A. At the same
time, no modulation appears in a homeotropic cell as theK24
term vanishes here. This implies that

T0,pl,T0,hm ,

FIG. 5. Shift of the temperature of a nematic–smectic-A transi-
tion in a nematic LC with spontaneous and induced deformatio
T(Nu2Nsd) is the temperature at which a uniform nematic ge
unstable and a spontaneous modulation appears. Qualitative de
dence phase energy vs temperature~both in arbitrary units!: solid
line, uniform nematic phase; long-dash line, smectic A phase;
line, nematic phase with deformations induced by an exter
source; short-dash line, spontaneously modulated nematic pha
6-9
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whereT0,pl is the temperature of apparently uniformN-SmA
transition in a planar cell, andT0,hm is the temperature of a
Nu-SmA transition in a homeotropic cell. All the effects a
better pronounced for smaller thicknesses. For instance,
micrometer thin planar films seem to be the best for det
ing spontaneous modulations. However, as far as the t
perature shift is concerned, the cell thickness must be no
small to avoid size effects on theN-SmA transition tempera-
ture.

IV. CONCLUSION

We predicted a spontaneously modulated intermed
nematic phase that can be expected in a narrow temper
interval between conventional uniform nematic and smec
A phases. This possibility is derived from the relation~5!
between the saddle-splay and twist elastic constants,
dicted by the elastic theory, and the critical growth of t
twist elastic constant in the proximity of aN-SmA transition.
By virtue of this relation, in this temperature range t
saddle-splay term breaks the uniformity of the nematic dir
tor ground state. The phase can manifest itself as a spo
neous director modulation in a cell with azimuthally isotr
y

et

d

te
il

at
pe
ic

s
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pic surfaces with a planar anchoring. The cell thickne
should be sufficiently small but can be considerably lar
than the anchoring extrapolation length. The temperature
the spontaneously modulated ‘‘saddle-splay’’ nemati
smectic-A transition is predicted to be lower than that of th
uniform nematic–smectic-A transition.

Of course, the relation~5! should be considered with cer
tain circumspection as close to a smectic phase it can
strongly influenced by nascent fluctuations of the dens
Moreover, the result of Ref.@4# suggests that the value ofK24
notably deviates from that predicted by Eq.~5! even in a
nematic LC which does not have a smectic phase. We h
however, that this relation shows at least a correct tende
Experimental observation of a saddle-splay nematic ph
can throw a considerable light into this problem related to
intrinsic ability of LCs to spontaneous pattern formation.
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