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Intermediate periodic “saddle-splay” nematic phase in the vicinity
of a nematic—smecticA transition
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We consider possible spontaneous modulations of the nematic director induced by the elastic saddle-splay
K, term when the value of the elastic const&n, does not satisfy the Ericksen stability condition for the
homogeneous ground state. According to the standard formula expré&sing terms of the twist elastic
constantk,,, this can be expected close to the nematic—smécti@nsition whereK,, becomes very large.

It is predicted that in a planar nematic layer, more generally, if the surface director alignment is sufficiently

close to a planar onga modulated phase with observable long wavelength period can occur in samples
considerably thicker than the anchoring extrapolation length. The modulated nematic phase is expected to
persist into the smectic phase so that its temperature of the transition to smectic phase has to be lower than that
for the homogeneous nematic liquid crystal. Low amplitude short wavelength modulations are predicted for
any thickness if the surface director is sufficiently far from a pure homeotropic alignment. At the expense of
this mode the temperature of a nematic—sme#ticansition in a planar cell with isotropic surfaces has to be
lower than that for a homeotropic cell even if the periodic structure is not accessible for the direct observation.
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I. INTRODUCTION finite deformations, and distortion-resisting terms that are
minimum for an undistorted state. Therefore, in principle, a

Different phases in the condensed matter physics are clagonuniform director ground state is possible when the free
sified by the symmetry and specific structure of their groundenergy(FE) functional contains sign indefinite terms capable
states. The ground state structure of a specific phase is nef decreasing its value at the expense of finite distortions.
only a formal sign thereof, but, which is most important, is A nematic phase of liquid crystals is not an exclusion. The
an external manifestation of the principal intrinsic forces anddirector deformation energly is the sum
their balance, hidden behind the phase appearance. There-
fore, different phases represent different mechanisms of set- 1 1 , 1 )
ting the order in an external-field-free condensed matter. Fd:EJ dVi 5KV -n)+ 5Kyy(n-Vxn)

In particular, different phases of liquid crysta&lsCs) rep-
resent different intrinsic mechanisms of setting LC order that
can be described by a spatial distribution of correspondent
order parameters in the ground state. One of the specific LC
order parameters is the directorshowing a macroscopic
anisotropy axis resulting from averaging the individual ori-
entations of the constituting molecules. Mechanisms of setof the terms quadratic in the differentiation operatoAlong
ting director distortions in the ground state play a principalWith the three positive definite splay, twist, and bend terms
role in the physics of LCs since the long range order related’hich resist any deformation$.q contains two sign indefi-
to the director makes some of the LC phases visualized bf)it¢ terms, the so-called divergend&,, and Ky; terms,
means of a polarizing microscope. For instance, a nematiwhich can be a sourcg_of spon_tz.aneous distortions. The_refore,
phase is characterized by a homogeneous undistorted grouH?)e fundamental stability condition c_)f the standard uniform
state while cholesteric phase is just a twisted nematic wher@ématic ground state must be derived from the FE func-
the director spontaneously rotates about some single dire@onal- Note that the total director dependent FE functidhal
tion. The cholesteric order is set by a balance between thi§ & Sum of the deformational pafy and the surface anchor-
chiral force that tends to twist the director and is described"d energy that depends solely on the director orientation on
by the chiral Lifshits energy term, and the nematic elastidh® surfaces of the nematic body. N _ _
force that resists twist deformations and is described by the LONg ago, Ericksen considered stability of a uniform di-
positive definitek , term in the nematic energy. rector ground state, dlsr_egardmg the anchorl_ng ka[gi_erm,

Generally speaking, the director distribution is always se@nd found that the elastic constaktg, andK 4 in a uniform

by a balance of distortion-inducing terms that gain energy fof'@matic phase cannot be arbitrary. In terms of the dimen-
sional quantitiesk,,=K,,/Kq; and pj=1—2Ky,/Ky; the
correspondent restriction reduces to the two inequalitiés

1
+ §K33(n><V><n)Z—K24V~[n(V~n)+n>< vxn

+K3V-[n(V-n)] 1)
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= 2kp<1—pj— 2kp,<0. (3)  shows that while the second inequali8) remains satisfied,
the first inequality (2) is violated as the constar~

The constankK ,, enters these inequalities just in the com- kz2/2 is large negative, i.e.,

bination pjj«<K,—2K4, which is natural ap represents
the total contribution of the terfW-[n(V-n)+nXV Xn] in

Fq4 (theK,, term in Eq.(1) is not the only one of this form:
the other contributioncK; is hidden in the sum of the posi-
tive definite terms, for details see, e.g., R&f; nevertheless,
referring to effects always related to the total contribution of

_th|s form, we will use the symbcK,,) . Therefore, the first K5, andK 33 also imply a very strong resistance to the twist
inequality means that the energy gain due to khg term- and bend deformations

:jnduct:edthdeforlmat;ons ”}T}St be sm;d!er tha?tthe.ﬁréerg):‘ oSt gjnce theK,, term identically vanishes if the director de-
ue to the splay term. The second inequaity will be ol no,, ,4q just on a single Cartesian coordinate, Khg term-

concern in th_|s paper, and we just note _that It restricts duced spontaneous deformations can be very complicated.
combined action of tht.s(24 andK, terms setting some lower Following arguments of Ref2] and experimental observa-
bm;rrl]d to Itheftm;irattld(zz. g horing in stability of th tion of theK,, term-induced stripe domains in thin nematic

e role o 13 l€rm and anchoring In stabriity ot e g, 14 51 \ve will consider a planar nematic layer and seek

pomogeneous nematc ground st fave been cnsel i roun st v o o ¢t prc
: . i single direction. Th& 5 term will be omitted in this analy-
have been predicted. The first one has the form of a surface 9 3 Y

. : ) L Sis since close to &l-SmA transitionp? is expected to be
director distortion vanishing over a few molecular IengthsI h the ratie.-/K gl f the order of
from the surfac¢3]. Although this surface mode is predicted arge, whereas Ihe ratio;3/1%,; remains ot the order ot one
for any finite K5 and, practically, in any geometry of the and can be neglected, see &4).
director, it cannot be directly observed because its wave-
length is of the molecular scale. The second mode can have . Kz TERM-INDUCED PERIODIC INSTABILITY
the form of an observable long wavelength periodic distor- OF THE HOMOGENEOUS NEMATIC GROUND STATE
tion [2]. For instance, in the case of a layer with a planar AT ANEMATIC —-SMECTIC-A TRANSITION
anchoring at both surfaces, which will be considered in this
paper, the homogeneous planar state is unstable if the thick-
nessH is smaller than the critical valud; given by

p||<—1. (6)

The inequality (6) implies that the homogeneous ground
state of the nematic director can be spontaneously deformed
in the proximity of a smectic phase. In this paper we will
explore this possibility which is not so obvious since large

A. Unboundedness of the functionaF 4 from below
and finding long wavelength spontaneous deformations

First of all we notice that the derivation of inequalities
and (3) indicates that when these are not satisfied, the func-
tional F4 has no minimum. Indeed, Ericksen showed that the
inequality opposite to Ed2) or (3) implies a negative elastic
whereL, is the anchoring extrapolation lengfB]. In this  energy densityf, in each spatial point inside the nematic
particular geometry, formuld4) generalizes Erisksen in- body. Asf, is quadratic in the modulation wave numtigr
equality (2) to the case of a finite anchoring akd;. Since  the volume integral ovef is proportional tog, i.e., F 4
inequality(2) is assumed to holdK3/K4|~1, andL,isof ~ —qgK. Since the maximum value of the anchoring energy
the order of a micrometer, this mode can be expected only idoes not depend om the total energy can be made unlim-
submicrometer thin filmgsee, e.g., Ref§4,5]). itedly large negative for an infinite wave numkgrThus,F

However, the situation when at least one of the Erickserhas no lower boundary and cannot be directly minimized.
inequalities is violated has never been considdfgd Pre- This problem is typical for incorporating the sign indefi-
sumably, one of the reasons has been that the valk&,pf nite divergence terms into the elastic theory. Indeed kthe
required for such a violation seemed to be unrealistic, anéerm is known to give rise to a similar problem: for any
the situation when it could actually happen seemed to b@onzeroK 5 the functionalF 4 is unbounded beloy13,14.
difficult to find. Contrary to this, here we show that, accord-Nevertheless, it was showfl5] that observable conse-
ing to the standard ideas of the physics of liquid crystalsquences of the presence of tkig; term inF 4 can be derived
such a situation should be rather common. solely in terms of this standard functional. Following the

Indeed, on the one hand, the standard elastic approagfame arguments, we will show that observable modulations
predicts that the value of the constdfy, is given by the  of the ground state, even when the Ericksen inequéitys

He=—2La(1-pf+Ky3/K19)>0, (4)

formula violated andF4 has no lower bound, can be found from the
Euler-Lagrange equations and boundary conditions associ-
K1+ Koo ated solely with the functiondt .
24— 4 ) Unboundedness of the functiongl, for a nonzeroK,,

formally results in a mode with an infinite wave numlapr

_ ) However,F is just the first term in the energy expansion in
derived in Refs[7,8] (also, see Ref9]). On the other hand, the director derivatives, i.e.,

close to a nematic—smectie-(N-SmA) transition the con-
stantsK,, and K53 grow very large[11,12. Then Eq.(5) Fioi=Fq+R, (7)
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where F,; is the total elastic energy ard is the higher- plitude can be considerably suppressed by thermal fluctua-
order elastic resistance. The functiofaldescribes the stan- tions that are not incorporated in the elastic approach. The
dard elasticity linear in the director derivatives, whereas only effect of such modes is some drepFy, of the total

R describes nonlinear elasticity. For standard weak deformaenergy which is difficult to estimate, but which is definitely
tions, | y|dn|<1, wherel,, is the molecular length, the non- Negative. In principle, this energy drop due to directly unob-
linear elastic energRR is completely negligible compared to Servable modgs can 'resuIF ina shn‘t of the temperature of the
Fq4. As a consequence, the linear elastic force is much largdN-SmA transition which will be discussed in Sec. IIl.

than the nonlinear elastic force, which justifies the very idea Ve arrive at the conclusion that the search for kg

of the linear elasticity(note that actually we deal with an term-induced spontaneous deformations is physically inter-
elastic torque—the generalized force that corresponds to a§sting i th_e_y have sufficiently long wavelengths or, equiva-
gular variables However, starting from some valug of lently, sufficiently small wave numbers. These mod_es can be
lan|, which is expected to be not much smaller than 1, th ound from the standard Euler-Lagrange equations and

nonlinear termR as a functional ofyn grows much faster ourjdary gonditions fqr the functionl,. In the following .
thanF 4 so that, for derivatives just slightly larger thgnthe zec;lron, this is done in the geometry of a planar nematic
nonlinear elastic resistance attains the level of the linear ela%-y '

tic forces[14]. In particular, this implies that for sufficiently o

large director derivatives, the nonlinear elastic force can bal- B. Spontaneous modulations in a planar layer

ance the linear elastic force due to the presence oKthe Consider a plane nematic layer of thicknésand assume
term. In terms of energy this means tibrings the lower iyt at its two surfaces the polar anchoring potentiglare
boundary to the sunf7) so thatF, attains the minimum  the same and favor a planar alignment, whereas the azi-
value for some large but finite wave numi@y whichis of  mythal anchoring is negligible. The last assumption is
the order of Uy . _ adopted both for simplicity and because isotropic surfaces,
Further, the total energdy,, is bounded below and deter- that modern technology enables one to make even on solid
mines the directorA distribution by means of the EU|ef'substrates[16], provide the best conditions for thi,,,
Lagrange equations(F4+R)=0 and boundary conditions mechanism to come into play. We assume that the director is

B(F4+R)=0 wherel andB are the known linear operators. @ periodic function of the coordinatg which is along the

To find the solution of these equations in the whole range ofayer, and also depends on the coordirstehich is normal
distortion strengths, one needs to know the form of the functo the layer and has the onset0 on its midplane. The
tional R. However, if one is interested in mesoscopic wave-director components on the upper surfaeeH/2 and lower
length modes, i.e., modes whose wavelength is much larggurfacez=—H/2 will be indicated by subscripts 2 and 1,
thanl, and that correspond to small director derivatives, the'espectively. Then the director-dependent FE of the periodic
problem can be dramatically simplified. Indeed, the contri-Structure per one period72q can be written in the form2]
butions of Fy and R in the above equations represent the Ky [H2 .

c_orresponden_t generalized el_astlc forces. Since for sr_nall degp_ 11 dzf dy[(ﬁinj)2+(kzz— 1)(n-Vxn)2

rivatives the linear force dominates, the second term in both 47 J_nz Jo

of the above equations can be neglected compared to the first K .

one, which reduces taF4=0 andBF4=0. But these are +(Kag— 1)(NX VX N)2]+ quf dy[2p)(Nz20,Ny 2
exactly the Euler-Lagrange equation and boundary condition 4m Jo ' '
formally corresponding to the standard functiokglfor any
value of K,,. Thus, for anyK,,, mesoscopic wavelength

modes can be found from the standard equations associate . . .
g w%erek%: K33/K 44 is the reduced dimensionless bend con-

stant. We will use the standard director parametrization
=(sinfcos¢,sinfdsinp,cosd), with the polar angle ¢

rived in the case of th&; term in Ref.[15]. ) .
Now we address the modes with a wavelength of the mo¢eunted from thez axis, and the azimuthal angi counted
om they axis. In terms of these angles, the standard uni-

lecular scale. To find such modes one needs to know th _ 9

functional R. However, these modes would be just a formal0rm Planar director ground state is given By=m/2, ¢
solution and actually are of no interest. As mentioned in~ i L

Introduction, such modes have a very short wavelength and AS in Ref.[2] we assume small deviations from the planar
cannot be directly observed. Indeed, if such a mode has @€ o be in the form

notable amplitude then its energy, which can be estimated

—N,10yNy 1)+ fa(nZ) +fa(n2)], (8)

as —QyKa?V whereV is the system volume, is so low and 0—ml2=1(z)sin(qy), ©)
hence the nematic phase is so stable that the transition to a
smecticA phase is not possible. Moreover, great deforma- $=9g(z)cogqy).

tions dn~Qya involved would make impossible the very

nematic phase. If, in contrast, its amplitude is very small therExpandingF in a functional Taylor series of these amplitudes
such a short wavelength mode cannot be observed. Morep to quadric terms and performing tlyeintegration, one
over, a very short wavelength modulation with a small am-obtains
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F=F,+F,. (10 04 (2)=(—a>+3apB?)cod yaz)cosh xBz)
The quadratic part is of the form +(B%—3a?p)sin( yaz)sinh( xBz),

s (2)=(a®-3aB?)sin(yaz)sinh xBz)
+(B%—3a?B)cog yaz)cosh xB2);

/ Kis 2, ¢2 i i iti
+2x9' D]+ 57 Ipy(fa02— fa9) +h(fi+f3)], x is an arbitrary positive number, and

(11) =\ /2'125_ 1, (19
22

where we introduced following reduced quantities: the di-
mensionless coordinate=z/H (for which we leaved the 2Kyt 1
same notatiop reduced thicknese=H/L, (L, is the an- B=1/ T
choring extrapolation lengthand dimensionless wave num- 22
ber y=qH. In the last bulk term in Eq(11) we neglected 1
compared to a largk,,; the quadric energi, will be given

_Kll 12 2 2.2 262, 12
Fz{fag}—ﬁ _mdz[f +x°g°t ko x“f°+g

The Euler-Lagrange equations and their reduced form
(16), (15) for the modef*,g~ can be obtained by replacing

below. T e ~y S
Now we show that this functional actually describes twolc 'g" with £7,g". The modef *,g" obtains in the form
independent modes. To this end we separate symmetric and f+=cf; +df] (20)
C 1

antisymmetric(with respect to the middle plare=0) parts
of the functionsf(z) and g(z), i.e., f=f"+f", g=g* g =cg; +dg;
+g~, where f*(2)=f"(-2), g*(2)=g*(—2), whereas c d

f(2d=—-1"(-2) andg (2)=—9g (—2). Then the func- \yherec andd are arbitrary constants, and
tional (12) splits into the sum

Fo{f,gt=F,{f 9"} +F{f",g7}, 12 fc (2)=cod xaz)coshixBz),

+ _ . -

where F,{f~,g*} is the energy of the modé ,g*, and fq (2)=sin(yaz)sinh(xf2), (21)
F,{f*,g} is the energy of the modE",g~. As there is no 3 o s
interaction term in the leading order energl), the modes 9c (2)= (e’ =3ap7)sin(xaz)cost(x52)
f*,g” andf~,g" are linearly independent. In particular, the +(B3—3a2B)cog yaz)sinh xBz),
Euler-Lagrange equations fét,{f,g} split into independent
Euler-Lagrange equations for the functionglgf~,g*} and g (2)= (83— 3a%B)sin yaz)cosh x 82)
Faif".07}.

The Euler-Lagrange equations for the functional +(—a®+3aB?)cog yaz)sinh( xBz).

Fo{f~,g"} constitute the system _ _
The above solution of the linear problem allows one to

f" —Koox’f ~— xkoog "' =0, (13)  find critical points where the system becomes unstable with
respect to nonzero amplitudes b, ¢, andd. This point is
ko9 +xf7)' —x?g" =0, (14 determined by those parameters for which the quadratic
functional F, vanishes for finite values thereof, and can be
which can be readily transformed to the form found from the boundary conditions fé,.
The boundary conditions to the Euler-Lagrange equations
gt =1t""Ix3, (15  (13) and(14) can be reduced to the form
tffwr_Xfou_i_ k22X4f7:O- (16) Aa+Ayb=0, (22)
From these equations the motie,g™ is found to be B,a+B,b=0, (23
f-=af, +bf,, (17 where
gt=ag! +bg, , Aa=(fy"+pyxga +df;)2,
wherea andb are the integration constants; Ap=(fy "+ p)xgp +dfy )2, (24)
f4 (2)=cog xaz)sinh(xBz), Ba=[kooga "+ xf2)+Pxfalz
fy (z)=sin(yaz)cosh xB2), (18 Bp=[kooA9p "+ xfp)+pxfp 12;
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the subscript 2 indicates that the correspondent function isf the system for the parametensp,|, ky,, andks; below

calculated forz=1/2. The critical condition for the mode
f~,9" (17) to occur is
Dap=AaBpr—ApBa=0, (295
whereD,,, is the determinant of the syste{®2), (23). This
equation can be treated analytically only in the limit of a

very smally. In this limit one has the following asymptotic
behavior:

t:= X | aibt = (b-a)
o~ — —_— —a ,
2 2\/5 4k
t;= Xl atbt ——(b-a) (26
— — _— —a s
2 \/E 4k22
il b+ 3 (a+b)
=—la—-b+—+—(a ,
92 \/E 4k22
S = i a+b+ > (b—a)
2 2\/5 4Kzo '
Substituting this into Eq(25) up to termsO(1/k,,) gives
h+2(1-pf)=0, (27)
or, equivalently,
hw=—2(1-pf), (28)

whereh,,, is the critical value of thickness of the instability
with a very small wave number, which reproduces @ for
K13=0. We will see that, as in Ref2], h,,, is actually the
upper critical thickness below which the modulation wjth
—0 appears.

The critical condition for the modé™,g~ (20) with the
amplitudesc andd can be found similarly. Introducing.,
A4, B, andBy by replacinga by c, bbyd, f~ by f*, and
g* by g~ in the definition(24), this condition can be re-
duced to the form

DCd:ACBd_AdBczol (29)
where D4 is the determinant of the linear system for the
amplitudesc and d, obtained from the boundary conditions
for the modef*,g~ (21). However, in contrast to Eq25),
equality (29) is not possible for smaly, which can be easily
seen from the asymptotic value of the functioRa{f *,g~}.
Indeed, one hat, =c, f;'~g, ~x, and hence the positive
term f; f; '~ x, whereas the negativis,, term pjxg; f5
~ x2, which is much smaller foy—0. Therefore, the mode

this point, where the determinants are nonzero and the insta-
bility is well developed. This behavior and, in particular,
small but finite amplitudes of the modes can be found only
with regards for the quadric terfd, in the expansion of

(8). In F, we can retain only the bend and twist terms as they
have very large coefficients;; andk,,, which gives

F4=Fapendt Fatwist

1/2

K
33f dZ[3(x2g2+f'2)f2+ 2)f2f'g
—-1/2

F4bend:m

+(fg’ = xg%?], (30)

1/2

k
2 [ ad(xt-g')(+ 397 (1~ 9"

Fatwist= — ﬁ

+(g'f2+2ff'g)+3g°%g’ + xf3+2g(ff'+3gg’)
+2xf(f2=g?)].

The procedure of finding small modulation amplitudes be-
low the transition homogeneous state-stripe state was devel-
oped in Ref.[17] (to be specific, we will first consider the
amplitudesa andb). It assumes that the distanedrom the
critical point, which is some priori unknown combination
of the physical parameters, is sufficiently small as the ampli-
tudesa andb vanish and grow along with this distance. This
small parametee is proportional to the determinait,, of
the system of linearized boundary conditions, and thus the
amplitudes are small if the system is sufficiently close to the
critical points whereD ,;, vanishes. Describing small ampli-
tudes close to the instability onset involves two general
steps: first, findinge as a function of the parameters of the
problem and determining intervals thereof where the ampli-
tudes are finite, and, second, calculating values of these am-
plitudes.

The first step does not involve quadric tef@®) and deals
solely with the linear equations considered above. Both lin-
ear homogeneous equatiofi8) and(14) cannot be simulta-
neously satisfied faD 5,7 0. As a result, one can choose one
of the two linear boundary condition&3) and (14) and
solve it to find one amplitude as a function of the other, let us
saya=a(b). Then this function of the amplitude is sub-
stituted toF,{f~,g"} to give F,xD,,b? The sign of this
expression determines the instability intervals: the amplitude
is finite when the sign is negative, and zero when it is posi-
tive; while the square root of the negative of the coefficient
beforeb? plays the role of the small parameter as in the
former case the amplitude is obviously proportional to this
quantity [18].

The second step allows one to find the amplitude value in
the intervals of the parameters found in the step one and

f*,9~ cannot appear for very small wave numbers as theequires extensive calculations. However, calculating the
energy of such a modulation would have been positive. Foprecise amplitude values would not add any principal infor-

x~ 1 the critical condition can only be analyzed numerically.
The pure linear problem we have dealt with so far only
allows for finding the critical points that correspondqy,

mation that could facilitate an experimental study of the pre-
dicted modulated phase since knowing the magnitude order
is sufficient for this purpos€l19]. Moreover, measuring the

=0 orD.4q=0. We, however, are interested in the behaviorvalues ofk,, andks; at aN-SmA transition is a problem in
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itself, but these are necessary for the precise calculation folhereﬁb is a result of substituting Eq&17), (18), and(31)
the modulation amplitude. In this situation, it is the mostin the functionak30), omitting the common factds? in thus
important to have a correct order of this quantity, which canpptained expression, and performing thiategration(in our

be obtained quite easily. To this end the total contribution ofcase, it can be done just numericallfhen up to the fourth
the term of the fourth order in the modulation amplitude cangrder in the amplitude, one has

be estimated by substituting the solut@fb), obtained from

the linear equations, into the quadric te(B0) [20]. After F{f*,g+}:Ebb2+|~:4’bb4, (34)
that the sum(10) is minimized with respect td. Finally,

smallness of the amplitudes should be verifeegposteriori ~ Minimization of this expression with respect to the ampli-
which gives the parameter range where the perturbatiotudeb gives

method described is applicable. Below we follow this proce-

dure. €p <0
We choose the first equatig@2) and solve it with respect b — - oF €= (35)
: : m 4p
to a, which gives
0, €b> O,
Po, (31)
a: — —D0. 2
Aq — —fb €S
Fn=F(bm) =1 4F4 (36)

Now the values of, andF, have to be calculated for the
solution given by Eqs(17), (18), and(31). To calculate the 0, €=>0.
energyF,{f~,g"} of the equilibrium modéd ~,g" we make
use of the Euler-Lagrange equations and &), which is
similar to the derivation of virial theorems. Multiplying Eq.
(13) by f and Eq.(14) by g, integrating across the layer,
adding the results, and then using E1), one obtains
Fo{f 7,07 }=¢€,b? (the coefficiente, is given beloy. A
similar expression is obtained for the motie,g~ with the
amplitudesc andd, i.e., F,{f*,g7}=¢4d°. As a result, the
total quadratic term is the sum

These are the desired expressions, respectively, for the
modulation amplitude and energy which can now be studied
as functions of the deformation sournge, volume to surface
ratio (reduced thicknessh, the bend and twist elastic resis-
tanceksz andk,,, and the wave numbey. Similar formulas
determine the amplituded,, and c(d,) and the energy
F(d,) of the modef*,g~. In the following section, we
describe the modulations represented by these formulas.

F.=e b2+ e.d? IIl. THE MODULATED SADDLE-SPLAY NEMATIC
2= €p €407, (32
PHASE: APPEARANCE AND OTHER OBSERVABLE

where e, and €4, which play the role of the distance from EFFECTS
the critical point, are of the form A. Modulation amplitude and spectrum

Numerical calculations by formula@5), (36), and (33)

(33 show that, as expected, the quantitT‘e@o and I~:4,d are al-

a ways positive so that the negativity ef ande, is necessary
for the correspondent mode to occur. We fixed values of all
the parameters byt and calculated the amplitudésand d

Dab
szz(gnga_gngb)A—zy

D
ed=2(g§2AC—g§2Ad)—°2d. as functions ofy (spectrum. In line with the analytical
A analysis of the smaly limit, the spectrumb(x) may have a

long wavelength branch that exists forh,, and starts at

In accordance with the general expectation, these quant'bzzo, and a short wavelength branch that appears for any
ties are proportional to the determinarig, andDcg, re-  thickness provideg < —1. At the same time, the spectrum
spectively, which justifies considering them as a distancg(X) has only a short wavelength branghe emphasize that
from the critical point wheré®,,=0 or D¢yg=0. Itis clear  the short wavelength branch contains a wide rangg cbr-
that e, which vanishes in the critical point, is necessarily responding to modulations with small director derivatives
negative in the modulated phase. A numerical analysis showsnd mesoscopic wavelength; this nomenclature appears here
that €, as a function of the wave numbgrcan be negative just to label the two spectral branches
for both smally and largey, whereas the functiory is We will describe the spectrum in terms of the supercriti-
always positive for smalk. For this reason and for brevity, cality of the main parametera:p; = p;+1 which shows the
we will consider the amplitudeb and a(b) of the mode  distance from the point where the Ericksen inequalityis
f~,g" alone. violated (becomes the equality and Ah=(h—h,,)/h;,

Following the method outlined above we now calculatewhich shows the distance from the critical point of the long
the quadric terni30) as a function of the single amplitude  wavelength instability. FoAp;>0, a nematic phase remains

Obviously, this functiorF4(b) has the form homogeneous for angh (if K3 is neglected2]). For Ah
5 >0 and negativeAp; somewhat smaller than O, a long
Fi{a(b),b}=F,,b%, wavelength branch is absent, and both amplitudesd d
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FIG. 1. (a),(b) The amplitudeb (in radians (a) and energy den- FIG. 2. (a),(b) The amplitudeb (in radiansg (a) and energy den-

sity F/h (in units K1,/h?) (b) as functions of the dimensionless sity F/h (in units K;;/h?) (b) as functions of the dimensionless
wave numbery for the thickness fixed dt=10 and three different wave numbery for p; fixed at py=—5 (which corresponds to
values of p: p;=—3 (solid), p;=—3.17 (dash-dottel] p;= h,w=48) and three different values df: h=40 (solid), h=38

— 3.5 (dashed The reduced twist and bend constants are modestlydasheg, h=37 (dotted. The reduced twist and bend constants are
large: ko,=10, k33=15. This might be relevant to a nematic LC k,,= 70, k33=90.

relatively far from a nematic—smect&-transition.

to large deformations, and it is natural to assume that its

have a short wavelength branch for large xs,~ 10, this  incorporating would have resulted in even smaller modula-
Xsw being always smaller fdo than ford. For a very largey, tion amplitudes. For smaly it means nothing as the linear
bothb andd exponentially decrease which can be seen fronelasticity dominates in this range, whereas for modulations
the formula(35) and the presence of the hyperbolic functionswith a very largey it gives more ground to believe that their
in f(z) andg(z): b~d~exp(—2"%2y) when y——=. At  exact amplitudes remain negligible as predicted by the analy-
the same time, the energy of both the modes monotonicallgis above. This reasoning allows one to assume that the ex-
drops toward large negative numbers as was predicted iponential amplitude decrease at the right side of the short
Sec. Il A. Obviously, ifAp;<0, behavior of the energy and wavelength spectrum provides a natural uppeoound for
amplitude for very largey has exactly the same character physically interesting modulations. In other words, ex-
also forAh<0, which is illustrated in Figs. 1-4. Formally tremely short wavelength modes, that we cannot describe
speaking, the short wavelength spectrum continues to infinraccurately by the standard equations, are of no interest as
ity, but, of course, as was discussed in Sec. Il A, actually ithey have negligible amplitudes; while all modes with non-
ends at some very large but finig, = QuH. negligible amplitudes are described accurately by these equa-

Here it is in order to note that, although the amplitudes oftions. This remarkable property makes our consideration
modulations with an extremely large~ xyy cannot be found  self-consistent and closed.
without incorporating the higher-order terR the above The inequalityAh<<0 can take place only ihp;<0. For
asymptotic results, obtained from the standard equationAh<0, in addition to the short wavelength branch there ap-
valid only for a sufficiently smally, can give us an idea pears a long wavelength branch which beging a0 and
about the exact amplitude behavior fpr- yy . Indeed, the ends at somegy, (solid curves in Figs. 1 and)2The posi-
higher-order ternR describes an increasing elastic resistancdions of the endy, of the long wavelength spectrum and the
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FIG. 3. (a),(b) The amplitudeb (in radian$ (a) and energy den- : _ ;
sity F/h (in units K;;/h?) (b) as functions of the dimensionless wave numbery for py fixed atp, 10 (which corresponds to

h,w=198) and four different values df: h=280 (dotted, h=40
(solid), h=13 (dashed, andh=5 (dash-dottefd The reduced twist
and bend constants akg,= 70, k3= 90.

wave numbery for p; fixed at pj=—5 (which corresponds to
h,,=198) and four different values df: h=13 (dotted, h=8
(solid), h=5 (dashedl andh=2 (dash-dotted The reduced twist
and bend constants akg,= 70, k33=90.
in the fourth-order terms: the quadric function@0) de-

beginningys,, of the short wavelength spectrum depend bothscribes harmonics interaction which determines the ampli-
onAh andAp (Figs. 1 and 2 the closerAh andAp to O,  tudesa, via n nonlinear equations. However, the principal
the smallery,, the largerys,, and thus the longer the gap wave numbers of the instability and the correspondent am-
Xsw— Xiw between the two spectral branches. AR and plitudes can be estimated qualitatively from the dependences
Apj become more and more supercriti¢eé., negative and b(x) andF(x) without solving this complicated nonlinear
large in the modulusthese two points first coincid@ash-  problem.
dot curves in Figs. 1 and)2and then the gap between the  The curves on Figs. 1—-4 suggest that, in spite of having in
branches disappea(bigs. 1-4. some situations no gap between long and short spatial waves

In previous sections we have restricted the formulas t@and thus no formal division into two branches, there are two
consideration of a single mode with an arbitrary vajuef  quite different wave numbers that determine the observable
the wave number. The spectrum of the instability, howevermodulation. The first one is determined by the local energy
shows that the periodic modulation can contain many harminimum that lies aty between 1.5 and 2; and the second
monics: the modulation energy is negative for a continuou®ne is determined by the local amplitude maximum that lies
range ofy. For the periodic wave, this implies that it is a close toy~8. Figs. 1, 3, and 4 show that the amplitude of
superposition of the formx ,— ;a,cos(n/H) with some prin-  the principal long wave £0.1) is considerably larger than
cipal wave numbey,. In principle, this wave number can be the amplitude of the principal short wave. However, Fig. 2
found as a minimizer of the suii®4), but this is very diffi- ~ suggests that in some situations these waves can have small
cult. Indeed, different harmonics are independent only in thdut comparable amplitudes. Now we note that modulations
linear approximation: only the total quadratic energy of awith very different wave numbers can always be considered
nonmonochromatic wave is the sum of enerdieh of the  quasi-independent: the fast spatial mode with a large wave
constituent harmonics. Such an additivity does not take placeumber follows adiabatically the amplitude change of the
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slow spatial wave with a small wave number. This drives usEnergy
to the following plausible picture of the instability appear-
ance.

The spontaneous modulation has a wave number of the
order of 2, and its amplitude can be small or as large as a fev
tens of degrees. This wave can have a fine structure with ¢
wave number of order of 10. The fine structure can be seer
or can have an insufficiently large amplitude to be easily
observed. In addition, even if the parameters of the problerr
do not allow for the instability with a directly observable
amplitude and spatial period to occle.g., the thickness is
too large, the energy of the system can nevertheless be

lower than the energy of the homogeneous nematic LC at the TN-N)
expense of the instability with a very short wavelength and .
small amplitude. This can result in an observable effect T(N_-SmA) T T(N_-SmA) Temperature

which is considered below.
FIG. 5. Shift of the temperature of a nematic—smegtitransi-

B. Spontaneous modulations and the temperature of a tion in a nematic LC with spontaneous and induced deformations.
T(Ny—Ngg is the temperature at which a uniform nematic gets
unstable and a spontaneous modulation appears. Qualitative depen-

Any deformation of a nematic director—spontaneous Ordence phase energy vs temperat(eth in arbitrary units solid
induced by an external source—adds some amount of energiye, uniform nematic phase; long-dash line, smectic A phase; dot
to the energy of the uniform state. This can influence conditine, nematic phase with deformations induced by an external
tions that determine transitions of this nematic LC into othersource; short-dash line, spontaneously modulated nematic phase.
phases, and correspondent shift of the transition temperatures

can, in principle, be observed. Here we will be concerned-yrther, the energy of both, and SnA is a decreasing
with the temperature of a nematic—smedidransition. function of the temperature, and, far>T(N—SmA), the
There is a fundamental difference between the temperasnergy of a nematic phas¢ is lower than the energy of a
ture shift of the transition to a uniform Sknphase from a  smecticA phase, and vice versa. This picture is illustrated in
nematic phase distorted spontaneoudisd, and from a  Fig. 5. It clearly shows that a spontaneously modulated phase
nematic phase with distortions induced by an external forcgransforms into a St phase at the temperature which is
(Ning): these shifts have different signs which gives a prin-jower than the temperatuf®, of the standard transition from
cipal possibility to distinguish between the spontaneouslyy yniform nematic phase, whereas deformations induced in a
modulated phaseNsy and the standard uniform nematic nematic with the uniformed ground state bring the tempera-
phaseN;,q with distortions induced by an external source.tyre of the transition up. This can be expressed by the fol-

Let us show this. . lowing inequalities:
Spontaneous deformations lower the energy because they

appear in the ground state of a nematic phase which means
that

nematic—smecticA transition

T(Ngg— SMA)<T,, (40

F(Nsg) <F(Ny). 37) T(Njng— SMA)>T,.

| trast. if th i d state | it th A negative shift of the nematic—smect#ctransition tem-
n contrast, T theé neématic ground state 1S uniform then anyperature gives a possibility to identify a spontaneously
deformations cost a positive amount of energy, i.e.,

modulated phase. Furthermore, it is easy to see that the re-
sults obtained in this and previous sections imply that the
temperature of the transitidN,— SmA in a planar cell can
N be lower than that in a homeotropic cell even if a director
The temperaturely of a standard transitioMN,—SmMA  modulation is not observed in the planar cell. Indeed, assume
between the two spatially uniform phases can serve an obvihat a planar cell has isotropic surfaces, and, thus, the azi-
ous control point, and all other related temperatures will benythal anchoring is negligible, but the cell thickness is larger
considered relative to it. The transition temperatufébl,  than the upper critical thickness,, (28) of the long wave-
—SMA)=To, T(Nsg—SmA), andT(Nj,q—SmA) are de-  |ength modulation. Then sufficiently close to the nematic—

F(Ning)>F(Ny). (39

termined by the following obvious equalities: smecticA transition, in a planar cell there appear short
wavelength modulations that are not easily observable but
F(Ny)=F(SmA)=T,, produce negative energy F),, see Sec. Il A. At the same
time, no modulation appears in a homeotropic cell askhe
F(Ngg) =F(SmA)=T(Ngg— SmA), (39)  term vanishes here. This implies that
F(Ning) =F(SmMA)=T(Nj,q— SmA). Topi<Tonm:
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whereT, is the temperature of apparently unifofaSmA pic surfaces with a planar anchoring. The cell thickness
transition in a planar cell, andly,, is the temperature of a should be sufficiently small but can be considerably larger
N,-SmA transition in a homeotropic cell. All the effects are than the anchoring extrapolation length. The temperature of
better pronounced for smaller thicknesses. For instance, subiie spontaneously modulated “saddle-splay” nematic—
micrometer thin planar films seem to be the best for detectsmecticA transition is predicted to be lower than that of the
ing spontaneous modulations. However, as far as the temuniform nematic—smectié- transition.
perature shift is concerned, the cell thickness must be not too Of course, the relatio6) should be considered with cer-
small to avoid size effects on tié-SmA transition tempera- tain circumspection as close to a smectic phase it can be
ture. strongly influenced by nascent fluctuations of the density.
Moreover, the result of Ref4] suggests that the value ki,
IV. CONCLUSION notably deviates from that predicted by E&) even in a
_ ) ~ nematic LC which does not have a smectic phase. We hope,
We predicted a spontaneously modulated intermediatgowever, that this relation shows at least a correct tendency.
nematic phase that can be expected in a narrow temperatuggperimental observation of a saddle-splay nematic phase
interval between conventional uniform nematic and smecticzan throw a considerable light into this problem related to an
A phases. This possibility is derived from the relati& intrinsic ability of LCs to spontaneous pattern formation.
between the saddle-splay and twist elastic constants, pre-
dicted by the elastic theory, and the critical growth of the
twist elastic constant in the proximity off-SmA transition. ACKNOWLEDGMENTS
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